APPENDIX G

CRLF SITE ASSESSMENT
TABLE OF CONTENTS

CALIFORNIA RED-LEGGED FROG SITE ASSESSMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Project Location and Description</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>California Red-Legged Frog Background</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>ENVIRONMENTAL SETTING</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>METHODS</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Preliminary Data Gathering and Literature Review</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Habitat Assessment</td>
<td>5</td>
</tr>
<tr>
<td>4.0</td>
<td>RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Current and Historic Range of the CRLF in Relation to the Study Area</td>
<td>6</td>
</tr>
<tr>
<td>4.2</td>
<td>Assessment of CRLF Records Within One Mile of the Study Area</td>
<td>6</td>
</tr>
<tr>
<td>4.3</td>
<td>Habitats within the Study Area</td>
<td>6</td>
</tr>
<tr>
<td>4.4</td>
<td>Aquatic Habitats Within a 1-Mile Radius of the Study Area</td>
<td>10</td>
</tr>
<tr>
<td>5.0</td>
<td>SUMMARY</td>
<td>12</td>
</tr>
<tr>
<td>6.0</td>
<td>REFERENCES</td>
<td>13</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Regional Location</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Site and Vicinity</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Habitat Types</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Aquatic Habitats within 1 Mile of the Study Area</td>
<td>11</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

On behalf of the City of Shasta Lake, Analytical Environmental Services (AES) has prepared this site assessment in accordance with the Revised Guidance on Site Assessment and Field Surveys for the California Red-legged Frog (Guidance; USFWS, 2005) for the City of Shasta Lake Wastewater Treatment Facilities (WWTF) Upgrade (Proposed Project). This site assessment was prepared in support of a Biological Resources Assessment that AES is preparing for the Proposed Project. The purpose of this site assessment is to determine the likelihood of California red-legged frog (CRLF) presence in the Proposed Project site and surrounding vicinity.

1.1 PROJECT LOCATION AND DESCRIPTION

The WWTF is located at 3700 Tibbits Road within the incorporated boundaries of the City of Shasta Lake, Shasta County, California. The regional location is shown on Figure 1. The City-owned property consists of three parcels with corresponding assessor’s parcel numbers (APN) 064150070000, 064160005000, and 064160007000. For the purpose of this assessment, the study area only includes areas of the City’s property with the potential to be directly impacted by the Proposed Project. The approximately 106-acre study area is shown on Figure 2. The study area is bounded by Pine Grove Avenue to the north, Ashby Road to the west, and Churn Creek, a perennial stream that is a direct tributary to the Sacramento River, to the east. Regional access to the project site is provided by I-5. The study area is situated on Township 32 North, Range 5 West, Section 1 of the Shasta Dam U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle (quad) (USGS, 1980). The centroid of the study area is 40° 39' 46.7" North, 122° 23' 00.4" West.

The existing WWTF was designed to meet Title 22 requirements for reuse purposes and is currently regulated on a variety of biological, chemical, and physical contaminant parameters under Central Valley Regional Water Quality Control Board (CVRWQCB) Order No. RS-201400052, National Pollutant Discharge Elimination System (NPDES) Permit No. CA0079511, and Time Schedule Order R5-2014-0052 adopted on March 28, 2014. The WWTF currently discharges effluent into Churn Creek at two discharge points (001 and 002) and provides reclaimed water to three contracted users and to irrigate an approximately 40-acre sprayfield in the southeast portion of the study area. Under the current NPDES Permit, discharge of wastewater to Churn Creek, or its tributaries, is limited to the winter months (October 16th to April 14th) when the 10:1 dilution requirement (receiving water to effluent flow) can be met. The sprayfield is used almost year round, but especially during the summer months when the WWTF cannot discharge to Churn Creek.

The Proposed Project consists of various upgrades to the City’s WWTF which would result in the production of high-quality effluent that could be discharged to Churn Creek year-round under a direct discharge NPDES Permit with no dilution requirements. The spray fields and 400-acre-foot reclaimed water reservoir would be taken off line and abandoned. The existing reclamation accounts would continue to be served using effluent that would be stored for short-term in the existing chlorine contact basin. Additionally, the Proposed Project includes a new effluent discharge pipeline, cascade re-aeration structure, and improvements to the Churn Creek outfall at discharge point 001. The specific location of the replacement effluent discharge pipe alignment is still being determined. Discharge point 002 would be abandoned. With the exception of the improvements to the effluent pipeline and outfall structure in the
Figure 1
Regional Location

SOURCE: ESRI Data, 2014; AES, 2014
Study Area
Proposed Project Areas
City of Shasta Lake

LEGEND

SCALE

0
1,000
2,000
Feet

Figure 2
Site and Vicinity

SOURCE: "Shasta Dam, CA" USGS 7.5 Minute Topographic Quadrangle, T32N, R5W, Section 1, Mt. Diablo Baseline & Meridian; AES, 2014
The majority of proposed improvements would take place within the existing development footprint of the WWTF.

1.2 CALIFORNIA RED-LEGGED FROG BACKGROUND

The historical range of the California red-legged frog extended from the vicinity of Point Reyes National Seashore in Marin County southward to northwestern Baja California, Mexico, and inland to approximately Redding in Shasta County. Over the years these populations have become fragmented or extirpated. The CRLF occupies a fairly distinct habitat, combining both specific aquatic and riparian components. The adults require dense, shrubby or emergent riparian vegetation closely associated with deep (greater than 2 1/3-foot deep) still or slow moving water. Waters have to be inundated for at least 4-5 months for metamorphosis. The largest densities of CRLF are associated with deep-water pools with dense stands of overhanging willows (Salix spp.) and an intermixed fringe of cattails (Typha spp.). Well-vegetated terrestrial areas within the riparian corridor may provide important sheltering habitat during winter (USFWS, 2002). Stock ponds are known to be utilized by this species if they have the proper hydroperiod and usually must be absent of nonnative predators such as bullfrogs. CRLF have been documented in the presence of predators but there is a strong negative association between bullfrogs and CRLF. CRLF can aestivate in small mammal burrows and moist leaf litter during the summer. They have been found up to 100 feet from water in adjacent dense riparian vegetation.

Less commonly, breeding has been documented in various habitat types lacking dense vegetative cover. CRLF may breed in artificial ponds with little or no emergent vegetation and have been observed to successfully breed and inhabit stream reaches that are not cloaked in riparian vegetation (USFWS, 2000). Additionally, in the Sierra Nevada, CRLF have been documented in burned-over mine tailings, isolated ridge top ponds, and ponds with exotic predators. Small, undocumented populations may currently exist within the Sierra Nevada.

2.0 ENVIRONMENTAL SETTING

The WWTF is located in the City of Shasta Lake, approximately 10 miles north of Redding, California. Sacramento Valley-Shasta College (224) climate data obtained in the vicinity of the WWTF documented an average total annual precipitation of 8.68 inches for the April 2013 to March 2014 water year (WRCC, 2014). The Shasta Dam (048135) monthly record climate data recorded an average total annual precipitation of 61.82 inches from January 1943 to March 2013 (WRCC, 2014). Therefore, the average precipitation obtained for the 2013 through 2014 water year is approximately 14 percent of the average total annual precipitation documented over the last 70 years. The study area is comprised of the following soil types: (AnD) Auburn loam, 8 to 30 percent slopes, (BkC) Boomer gravelly loam, 0 to 15 percent slopes, and (AtE2) Auburn Very Stony Clay Loam, 30 to 50 Percent Slopes (NRCS, 2014). None of these soils are considered hydric (NRCS, 2014).
3.0 METHODS

3.1 PRELIMINARY DATA GATHERING AND LITERATURE REVIEW

The methods used for this CRLF site assessment are based on the U.S. Fish and Wildlife Service (USFWS) Revised Guidance on Site Assessment and Field Surveys for the California Red-legged Frog (Guidance, USFWS 2005). The site assessment included a review of available resources to provide an overview of the upland and aquatic habitats present within the study area and surrounding vicinity. The California Department of Fish and Wildlife (CDFW) California Natural Diversity Data Base (CNDDB) (CDFW, 2003) and the USFWS Recovery Plan for the California Red-legged Frog (Rana aurora draytonii) (USFWS, 2002) were reviewed for information regarding known existing and historic populations of CRLF in the vicinity of the study area. A listing of other information sources reviewed prior to conducting the field assessment is provided below:

- USGS “Project City, CA” 7.5-minute topographic quadrangle;
- Aerial photography of the property and vicinity,
- California’s Wildlife Volume 1, Amphibians and Reptiles (Zeiner, D.C., et al., 1988),
- Amphibians and Reptiles of Special Concern (Jennings and Hayes, 1994), and
- USFWS online species information for CRLF (USFWS, 2007).

3.2 HABITAT ASSESSMENT

Three criteria were used to assess the likelihood of CRLF presence in or within the vicinity of the study area: 1) the location of the study area with respect to the current and historic range of the CRLF, 2) the presence/absence of known records of CRLF within a one-mile radius of the study area, and 3) the habitat types occurring within the study area and a one-mile radius.

AES staff conducted a biological reconnaissance survey of the study area on May 2, 2014. During the survey, the habitat types on-site were classified and further evaluated for the occurrence of and the overall potential to support CRLF.

Vegetation Community and Wildlife Habitat Classification

Vegetation communities (assemblages of plant species growing in an area of similar biological and environmental factors) in upland habitats were classified using the CDFW Terrestrial Natural Communities of California system, or “Holland type” (Holland, 1986), and where applicable, detailed by "Vegetation Series" (distinctive associations of plants, described by dominant species and particular environmental setting) using the California Native Plant Society (CNPS) Vegetation Classification system (Sawyer and Keeler-Wolf, 1995). Wetlands and other aquatic habitats were classified using the USFWS National Wetlands Inventory (NWI) Classification System for Wetland and Deepwater Habitats, or “Cowardin class” (Cowardin et al., 1979).
4.0 RESULTS

4.1 CURRENT AND HISTORIC RANGE OF THE CRLF IN RELATION TO THE STUDY AREA

The study area is within the historic range of the CRLF according to California’s Wildlife Volume 1, Amphibians and Reptiles (Zeiner et al., 1988). Its current range is much reduced, with most remaining populations found in central California along the coast from Marin County south to Ventura County. Currently no USFWS designated critical habitat or recovery units for this species are located in Shasta County.

4.2 ASSESSMENT OF CRLF RECORDS WITHIN ONE MILE OF THE STUDY AREA

No documented occurrences were indicated within 1 mile (1.6 km) of the site. The nearest documented occurrence of CRLF is approximately 60 miles (96.6 km) southwest of the Proposed Project location in Tehama County (CNDDB Occurrence #121); one adult CRLF was observed within Red Bank Creek in 1986.

No USFWS critical recovery areas were identified within, or in the vicinity of the study area. The nearest CRLF critical recovery unit is located in Butte County (BUT-1), approximately 130 miles from the study area.

4.3 HABITATS WITHIN THE STUDY AREA

As shown on Figure 3, terrestrial habitat types within the study area include ruderal/developed areas, riparian, oak woodland, and disturbed oak savanna. Aquatic habitats within the study area include man-made reservoirs, man-made ditches, irrigated wetland-like formations, and stream courses. A general discussion of each habitat type is provided below.

Terrestrial Habitats within the Study Area

Ruderal/Developed

The majority of the study area is comprised of ruderal/developed areas. These areas include paved and graded roads and road shoulders within the WWTF site and along Tibbitts Road that extends east from Ashby Road through the WWTF site, infrastructure associated with the WWTF site, ornamental landscaping, and human-disturbed areas associated with earth-moving activities. Dominant weedy vegetation associated with this habitat type includes ripgut brome, soft chess, winter vetch (Vicia villosa), prickly lettuce (Lactuca serriola), common sowthistle (Sonchus oleraceus), short-pod mustard (Hirschfeldia incana), wild oat, and rough cat’s ear. Ornamental landscaping vegetation includes American sweetgum (Liquidambar styraciflua), palm (Washingtonia sp.), and California redwood (Sequoiad sempervirens). CRLF are unlikely to occupy this habitat in any life stage because it has a high level of human disturbance.
Habitat Types

Habitat Types Outside Project Site:
- Oak Woodland: 12.84 ac
- Riparian: 1.47 ac

Habitat Types Within Project Site:
- Disturbed Oak Savanna: 40.45 ac
- Oak Woodland: 2.22 ac
- Riparian: 3.54 ac
- Ruderal/Developed: 59.98 ac

Legend:
- Project Site
- Man-Made Ditch
- Outlet Channel
- Creek

Source: Microsoft aerial photograph, 6/12/2010; AES, 2014
Riparian

Riparian habitat occurs along the perennial reaches of Churn Creek within the eastern and southern portions of the study area. This habitat type consists primarily of an overstory of valley oak (*Quercus lobata*), arroyo willow (*Salix lasiolepis*), Goodding’s willow (*Salix gooddingii*), and white alder (*Alnus rhombifolia*). Understory shrub and herbaceous species include California rose (*Rosa californica*), narrow-leaved willow (*Salix exigua*), California coffeeberry (*Rhamnus californica*), western poison oak (*Toxicodendron diversilobum*), Himalayan blackberry (*Rubus discolor*), toad rush (*Juncus buffonius*), soft rush (*Juncus effuses*), spreading rush (*Juncus patens*), tall flatsedge (*Cyperus eragrostis*), and sedge (*Carex* sp.). CRLF seek cover in adjacent upland habitats during late summer if/when their breeding ponds dry up. The riparian woodland surrounding Churn Creek could potentially provide upland refugia and dispersal habitat for CRLF.

Oak Woodland

Oak woodland occurs in the eastern portion of the study area and on both sides of Churn Creek. Dominant overstory vegetation includes blue oak (*Quercus douglasii*), valley oak, and interior live oak (*Quercus wislizenii*), with scattered California buckeye (*Aesculus californica*) and foothill pine (*Pinus sabiniana*) dispersed throughout. The understory vegetation varies in density along the proposed pipeline route. Understory vegetation in some areas consists of species similar to those described within the nonnative annual grassland. Intermittently dense understory shrub vegetation occurs in other areas associated with rock outcroppings. Understory vegetation includes western poison oak, California coffeeberry, and buckbrush (*Ceanothus cuneatus*). CRLF seek cover in adjacent upland habitats during late summer if/when their breeding ponds dry up. The oak woodland surrounding Churn Creek could potentially provide upland refugia and dispersal habitat for CRLF.

Disturbed Oak Savanna

Disturbed oak savanna habitat occurs in the eastern portion of the study area. This land cover type includes sparse vegetation previously described for the ruderal/disturbed areas and oak woodland habitat within the study area. A spray field irrigation system for the disposal of treated effluent has been installed and is currently operated throughout the disturbed oak savanna habitat type. Additionally, this area is currently used for cattle grazing. Spray field irrigation would cease as a result of the Proposed Project; however, the irrigation infrastructure would be abandoned in place. By abandoning in place, minimal impacts will occur except for a return to the more natural summer dry period which existed here before the use as a spray field. CRLF are unlikely to occupy this habitat in any life stage because it has a high level of human disturbance.

Aquatic Habitats within the Study Area

Treatment Basins and Reservoirs

Five man-made basins and one 400 acre-foot (af) reclaimed reservoir exist within the study area and serve as seasonal and intermittent storage for intermediate stages of wastewater treatment. The unlined basins are man-made, engineered, and constructed fully in uplands. Dominant obligate and/or facultative vegetation observed in the basins include prickly lettuce (*Lactuca serriola*), rough cocklebur (*Xanthium strumarium*), Italian ryegrass (*Lolium multiflorum*), and curly dock (*Rumex crispus*).
The 400 af reclaimed reservoir is located in the western portion of the study area. The reservoir is lined with natural clay and is used for temporary storage of tertiary treated recycled water. During the time when the WWTF cannot discharge to Churn Creek, the recycled water from the reservoir is used to fulfill the WWTF’s reclamation accounts or is disposed of via the sprayfield. During the winter, the treated water can be discharged to Churn Creek via discharge point 002 in accordance with the NPDES permit. The reservoir itself does not exhibit significant aquatic vegetation, the presence of which generally encourages use by CRLF. The reservoir currently experiences regular changes in volume based on the reclaimed water storage needs, including holding water during the wet months when irrigation rates and recycled water demands are low. The man-made basins and reclaimed reservoir do not meet CRLF breeding habitat requirements due to the frequent changes in water volume and unnatural conditions.

Irrigated Wetland-like Features

Several man-made irrigated wetland-like features were observed to occur through the treated effluent sprayfields located along the eastern perimeter of the study area. These wetland-like features have formed solely as a result of WWTF standard operations, including spray field irrigation and from leaks in the effluent pipeline that connects to the discharge point 001 outfall in Churn Creek.

During surveys, pooling irrigation water was observed in the immediate vicinity of some of the sprinklers within the spray fields. Hydrophytic vegetation typical of disturbed wet areas is growing sparsely in areas where spraying has been relatively concentrated. Vegetation observed in these areas primarily consisted of curly dock (*Rumex crispus*), water smartweed (*Polygonum coccineum*), mannagrass (*Glyceria sp.*), and water speedwell (*Veronica anagallis-aquatica*). Overall, the site is gradually sloped and it is not anticipated that standing water would naturally form long enough to facilitate wetland creation on the property without WWTF-associated activity.

Further, neither sufficient hydric vegetation nor hydric soils were observed within the wet areas. Wetland hydrology indicators including visible irrigation water, saturation, and visible inundation are present as a result of WWTF standard operations and procedures including utilization of spray fields. Based on the three-parameter test, the absence of hydric soil indicators and sufficient hydrophytic vegetation indicates these features do not constitute a wetland. The wetland-like formations do not meet CRLF breeding habitat requirements due to variable intermittent flows, water depth less than 2 1/3-feet deep, and inundation that does not persist for a sufficient portion of the breeding season.

Stream Courses

One generally perennial stream, Churn Creek and some reaches of unnamed tributaries, occurs within the study area. Churn Creek is a perennial blue line stream that runs east and south of the WWTF. During the summer months when there is little rainfall, Churn Creek often runs dry in its lower reaches and may run dry in the project vicinity. Dominant vegetation associated with this perennial stream is identical to those described within the riparian habitat above. The two unnamed tributaries are also bordered by the riparian habitat description above. The cobble-reinforced outlet channel (Figure 3) which drains the reclaimed reservoir in the winter months flows into the natural water course of the northern unnamed channel. This cobble-reinforced channel shows developed riparian vegetation including
blackberries and willows, but does not meet CRLF breeding habitat requirements due to variable intermittent flows and restricted stream habitat diversity. Below the cobble reinforced area is a significant riparian area. The tributary which originates offsite has a more consistent flow pattern but is still intermittent in nature. Downstream from where these unnamed tributaries merge there is a small check dam which collects any runoff from the spray fields in the summer to prevent runoff from reaching Churn Creek. This small check dam overtops during the time when water from the reclaimed reservoir is discharged through the pump station into the upper cobble-lined channel in accordance with the WTTF’s NPDES permit. Discharge point 002 is the location of where these tributaries enter Churn Creek. Churn Creek provides potential breeding habitat for CRLF due to its dense, emergent vegetation, and water depth greater than 2 1/3-feet deep that persists for a sufficient portion of the breeding season; however, the presence of predators such as bullfrogs, decreases the quality of habitat. Bullfrog tadpoles were observed throughout the study area within Churn Creek during the site assessment on May 2, 2014.

Man-made Ditches

Several man-made roadside ditches occur within the study area (Figure 3). Features observed along the bed and banks of the man-made ditches include defined bed and banks that range between approximately one- and 1.5-feet wide, a clearly defined ordinary high water mark (OHWM), and distinct drainage patterns. Although hydric soils necessary to meet the criteria of wetland features are not present, the features are considered ditches because they contain defined beds and banks in accordance with the USACE regulations identified in 33 CFR Part 328. The man-made ditches receive water via direct precipitation during rain events and from runoff from unnamed graded access roads within the WWTF property, and adjacent nonnative grassland and agricultural areas. The ditches were excavated wholly in and drain only uplands and do not carry a relatively permanent flow of water. Water from the ditches is culverted under roadways and drains over land to Churn Creek, which flows southeast of the property. The man-made ditches do not meet CRLF breeding habitat requirements due to variable intermittent flows, water depth less than 2 1/3-feet deep, and inundation that does not persist for a sufficient portion of the breeding season.

4.4 Aquatic Habitats Within a 1-Mile Radius of the Study Area

Aquatic habitats within a one-mile radius of the study area include creeks, wetlands, ponds, and streams and are shown on Figure 4. The majority of the off-site aquatic habitats are located on private property and are not accessible to surveyors. Inaccessible aquatic habitats that were not visible from public roads were identified using a combination of the NWI map and the USGS map of the “Project City, CA” 7.5-minute topographic quadrangle. The majority of these features are freshwater ponds and intermittent streams that potentially provide CRLF habitat. Because these features are not accessible by public road and are also not visible from the road, they are not discussed further in this site assessment.

Aquatic Habitats that are Publicly Accessible and Could be Surveyed

Five intermittent drainages occur within a one-mile radius of the study area and are accessible by public roads. These aquatic habitats will be accessible in a field survey by at least one access point if the USFWS determines further surveys are required. The drainages could provide potential breeding habitat for CRLF if they contain water greater than 2 1/3-feet deep and are inundated for a minimum of four to
Figure 4
Aquatic Habitats Within 1 Mile of Study Area

SOURCE: USFWS National Wetland Inventory, 1983; "Shasta Dam, CA"
USGS 7.5 Minute Topographic Quadrangle, T32N, R5W, Section 1, Mt. Diablo
Baseline & Meridian; AES, 2014
five months during winter and spring. If these requirements are not met, the drainages may provide foraging and dispersal or refugia habitat for CRLF. The five drainages and potential survey access points are described below.

Churn Creek

Churn Creek is a tributary to the Sacramento River that originates in the foothills of Redding, California. The intermittent drainage is publicly accessible by Ashby Road at the confluence of Churn and Nelson Creek. Churn Creek may provide potential habitat for CRLF.

Nelson Creek

Nelson Creek is an intermittent drainage that flows into Churn Creek (tributary to Sacramento River). The drainage is accessible by public roads where it intersects County Road A18, north of Ashby Road. Nelson Creek may provide potential habitat for CRLF.

Newtown Creek

Newtown Creek is an intermittent drainage that flows into Churn Creek (tributary to Sacramento River). The drainage is accessible by public roads at the intersection of County Road A18 and Ashby Road. Newtown Creek may provide potential habitat for CRLF.

Unnamed Tributary

An intermittent unnamed tributary that flows into Churn Creek is located northeast from the Nelson and Churn Creek confluence. The drainage is accessible by public roads where it intersects Ashby Road. The unnamed tributary may provide potential habitat for CRLF.

Salt Creek

Salt Creek is an intermittent drainage that flows into Churn Creek (tributary to Sacramento River). The drainage is publicly accessible near the intersection of Interstate Highway 5 and Pine Grove Avenue. Salt Creek may provide potential habitat for CRLF.

5.0 SUMMARY

AES conducted a CRLF site assessment for the study area and surrounding vicinity. Literature reviews were conducted to assess the current and historic distribution of the CRLF in relation to the study area. Aquatic and upland features within the study area and within a one-mile radius were assessed for potential CRLF breeding and dispersal habitats.

Due to the ruderaly developed characteristics of the aquatic resources found within the study area and the marginal habitat quality of these resources, combined with the lack of documented historic population use, it is determined that the study area would not support CRLF, and AES's recommendation is that additional CRLF study is not warranted.
6.0 REFERENCES

Western Regional Climate Center (WRCC), 2014. California Weather Database. Available at:

Data Analysis Branch, California Department of Fish and Wildlife.